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Failure of Teton Dam on June 5, 1976 
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Erosion is the main cause of  failure of  earth structures such as 

embankment dams, dykes and levees. 
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Large zoned embankment dam breach due to internal erosion 
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Numerical modelling of  a zoned embankment dam 

undergoing internal erosion. 

Turbulent Flow 



PhD project in Hydraulic Structures 

Phase I  A thorough study of  the hydraulic behaviour of  coarse rockfill material 

subjected to heavy and turbulent throughflow conditions. 

  

Phase II  Explore ways in which internal erosion processes and their development in porous 

material can be numerically modelled for engineering purposes.  
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Turbulent Flow Turbulent Flow 

Phase I  Study of  the hydraulic behaviour of  coarse rockfill material 

subjected to heavy and turbulent throughflow conditions. 

  

  

A systematic and confident understanding of  the throughflow is crucial for the 

design, safety assessment and erosion protection of  the dams and to decrease 

their risk of  failure. 

Numerical modelling Flow behaviour needs to be understood 

Material properties and governing equations for turbulent throughflow (Constitutive law ) 



Throughflow properties of  coarse rockfill material were studied by means of  :   

1. Analysing field pumping test data from Trängslet rockfill dam. 

 

 

 

 

 

 

2. Constructing a large-scale apparatus (permeameter )and doing extensive 

laboratory tests. 

 

 

 

 

3. Simulating 3D models for fluid flow through coarse materials, resembling 

the ones used in the laboratory experiments, by using the Flow-3D 

software.  

2 field tests (2008 and 2010) done by SWECO 

Borehole 

Cut-off wall 

Measuring Weir 
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Friction Factors:  

Reynolds  number dependency of  the friction factors was observed for high Re numbers! 
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Flow Laws:  



Numerical experimentation:  

• Study beyond the experimental limits (Re number) 

 

 

 

 

• Particle-path tracking 

 

 

• Studying the force balance within the porous media : 
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Reynolds number 

Burgers Eq Numerical simulations

Burgers Undefined Ferdos & Dargahi 2016 
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Turbulent Flow 

Turbulent Flow 
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Darcy’s Flow 
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Phase II  Explore ways in which internal erosion processes and their development in 

porous material can be numerically modelled for engineering purposes.  

Suffusion  and  

granulometric instability 
Contact erosion  

between two soil layers 

Concentrated leak 
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erosion 

 Understand the mechanisms  

 Facilitate numerical modelling 



Suffusion and the concentrated leak erosion mechanisms were 

studied by means of: 

1. Conducting laboratory experiments 

 

 

 

 

2. Developing a theoretical framework to facilitate continuum-based numerical 

modelling. 

 

 

 

 

3. Definition of  constitutive law of  erosion  whereby the initiation of  material 

instability “erosion initiation”,  as well as the continuation of  the phenomenon 

“mass removal rate” are accounted for. 

 



Laboratory studies on internal erosion  
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Grain size (mm) 

Soil-A Skempton

Tests for Suffusion mechanism: 
Soil-A mixture of  Skempton and Brogan (1994) 

Type A  
(constant hydraulic loading) 

Type B  
(constant material matrix) 

Initiation tests  
(2 repetitions) 

0 kPa mechanical loading  

10 kPa mechanical loading  

25 kPa mechanical loading  

50 kPa mechanical loading  



Conducted tests for Concentrated leak mechanism: 
Silty clay core material of  Teton dam in Idaho, U.S.A.  

Concentrated leak (HET): 

HET - 0  : 0 mechanical loading (4 repetitions) 

HET -25  : 25 kPa m.loading 

HET -50  : 50 kPa m.loading 

HET -75  : 75 kPa m.loading 

HET -100 : 100 kPa m.loading 



Hydromechanical Envelope model: 

Modification is needed to get the flow-induced shear forces in to account 

Taken from Li, 2006. 

Otherwise the stress reduction factors cannot be explained. 
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3D resistivity tomography studies 

20mm 

350 mm 

2
0

0
 m

m
 

8
0

m
m

 

16 electrodes in each row 



t = 20 hrs t = 22 hrs t = 27 hrs 

t = 32 hrs t = 37 hrs t = 43 hrs (end) 

Resistivity difference (ohm m) 
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3D resistivity change due to suffusion process 

This resistivity change can be translated to porosity change in media due to internal erosion. 



Conclusion remarks:  

Internal erosion- Pipe formation 
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Background           Objectives and Motivation              Methodology               Results                        Conclusion remarks 

Adopting the findings from the two aforementioned continuum based work enables modelling the internal 

erosion phenomena in embankment dams from initiation until the failure.  
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